Auxin regulation of Arabidopsis flower development involves members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) family.

نویسنده

  • Beth A Krizek
چکیده

Auxin is an important regulator of many aspects of plant growth and development. During reproductive development, auxin specifies the site of flower initiation and subsequently regulates organ growth and patterning as well as later events that determine reproductive success. Underlying auxin action in plant tissues is its uneven distribution, resulting in groups of cells with high auxin levels (auxin maxima) or graded distributions of the hormone (auxin gradients). Dynamic auxin distribution within the periphery of the inflorescence meristems specifies the site of floral meristem initiation, while auxin maxima present at the tips of developing floral organ primordia probably mediate organ growth and patterning. The molecular means by which auxin accumulation patterns are converted into developmental outputs in flowers is not well understood. Members of the AINTEGUMENTA-LIKE/PLETHORA (AIL/PLT) transcription factor family are important developmental regulators in both roots and shoots. In roots, the expression of two AIL/PLT genes is regulated by auxin and these genes feed back to regulate auxin distribution. Here, several aspects of flower development involving both auxin and AIL/PLT activity are described, and evidence linking AIL/PLT function with auxin distribution in reproductive tissues is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AINTEGUMENTA and AINTEGUMENTA-LIKE6/PLETHORA3 Induce LEAFY Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis.

Proper timing of the onset to flower formation is critical for reproductive success. Monocarpic plants like Arabidopsis (Arabidopsis thaliana) switch from production of branches in the axils of leaves to that of flowers once in their lifecycle, during the meristem identity transition. The plant-specific transcription factor LEAFY (LFY) is necessary and sufficient for this transition. Previously...

متن کامل

Cis-regulatory PLETHORA promoter elements directing root and nodule expression are conserved between Arabidopsis thaliana and Medicago truncatula

Nodules are unique organs formed on roots of legumes by soil-borne bacteria, collectively known as rhizobium. Recently, we have shown that orthologs of the AINTEGUMENTA-like (AIL) AP2 transcription factors PLETHORA (PLT) 1 to 4, that redundantly regulate Arabidopsis thaliana root development are involved in root and nodule growth in Medicago truncatula. Hence, it is conceivable that rhizobium h...

متن کامل

AINTEGUMENTA-LIKE genes have partly overlapping functions with AINTEGUMENTA but make distinct contributions to Arabidopsis thaliana flower development

AINTEGUMENTA (ANT) is an important regulator of Arabidopsis flower development that has overlapping functions with the related AINTEGUMENTA-LIKE6 (AIL6) gene in floral organ initiation, identity specification, growth, and patterning. Two other AINTEGUMENTA-LIKE (AIL) genes, AIL5 and AIL7, are expressed in developing flowers in spatial domains that partly overlap with those of ANT. Here, it is s...

متن کامل

AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning.

An Arabidopsis (Arabidopsis thaliana) flower consists of four types of organs arranged in a stereotypical pattern. This complex floral structure is elaborated from a small number of floral meristem cells partitioned from the shoot apical meristem during reproductive development. The positioning of floral primordia within the periphery of the shoot apical meristem depends on transport of the phy...

متن کامل

A molecular framework for auxin-mediated initiation of flower primordia.

A classical role of the hormone auxin is in the formation of flowers at the periphery of the reproductive shoot apex. Mutants in regulators of polar auxin transport or in the auxin-responsive transcription factor MONOPTEROS (MP) form naked inflorescence "pins" lacking flowers. How auxin maxima and MP direct initiation of flower primordia is poorly understood. Here, we identify three genes whose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 62 10  شماره 

صفحات  -

تاریخ انتشار 2011